
ECSE-415 Final Project: Flower Classification &

Segmentation

Durham Abric Matthew Caminiti Thomas Hillyer1

May 2, 2020

1Thank you for an interesting semester of computer vision!

Abstract

This report outlines the approach taken and the results obtained by Group 13 during the ECSE-
415 (Computer Vision) final project in Winter 2020. First, we cover the classification task and
discuss the implementation of the Support Vector Machine (SVM) as well as how we determined
which feature selection technique to use. Next we discuss segmentation using a Gaussian Mixture
Model (GMM) and the Normalized Graph Cut technique and how the hyperparameters for these
methods were chosen. For both parts, we provide example outputs to compare with the ground
truths provided by the course instructors.

Contents

1 Classification 2
1.1 Classification Results . 2

1.1.1 Confusion Matrix . 2
1.1.2 Validation Results . 2

1.2 Classification Methodology . 2
1.2.1 Dataset Description . 2
1.2.2 Feature Extraction . 3
1.2.3 Cross Validation & Hyperparameter Tuning 4

1.3 Classification Discussion . 4
1.3.1 Performance Evaluation . 4
1.3.2 Intricacies of Classification Methodology . 4

1.4 Classification Examples . 4

2 Segmentation 7
2.1 Segmentation Results . 7

2.1.1 Confusion Matrix . 7
2.1.2 DICE (Overall) . 7
2.1.3 DICE (Per Validation Set) . 8

2.2 Segmentation Methodology . 8
2.2.1 Image Preprocessing . 8
2.2.2 Segmentation Approaches . 8
2.2.3 Hyperparameter Selection . 9
2.2.4 Cross Validation . 9

2.3 Segmentation Discussion . 9
2.3.1 Performance Evaluation . 9
2.3.2 Methodology Strengths & Weaknesses . 10

2.4 Segmentation Examples . 10

1

1 Classification

1.1 Classification Results

1.1.1 Confusion Matrix

Validation Confusion Matrix

As the numbers are nearly indistinguishable from the confusion matrix, I will not reference the
image, but instead directly discuss the numbers. Categories we had great difficulty with included
but were not limited to: 79, 82, 90, 91. For these categories our classifier never correctly identified
any, and our assumption is that the unique features for these categories were often overrun with
clutter in the background.

1.1.2 Validation Results

The following table shows our weighted averages of our model’s accuracy, precision, and recall for
the 5 folds of our cross validation. Due to the minor variation in precision and recall from our
accuracy, we cannot make any actionable insights to the dataset. In the event that our precision
and recall numbers are significantly higher than our accuracy, it could suggest that certain samples
in the dataset corresponding to a portion of the categories are poor samples.

1.2 Classification Methodology

1.2.1 Dataset Description

The dataset used for the classification task of this project was a set of 6000 training images with
102 categories of flowers. Every flower image was in colour and whose dimensions were relatively
close to 500px by 500px. On average, the dataset contained 58 training images per category, with

2

Support Vector Machine

Accuracy Precision Recall

0.16 0.15 0.16

0.15 0.11 0.15

0.15 0.12 0.15

0.15 0.13 0.15

0.16 0.12 0.16

St. Dev. St. Dev. St. Dev.

0.0055 0.0083 0.0055

Multinomial Naive Bayes

Accuracy Precision Recall

0.15 0.11 0.15

0.137 0.09 0.14

0.12 0.11 0.12

0.132 0.09 0.13

0.155 0.12 0.15

St. Dev. St. Dev. St. Dev.

0.013 0.012 0.012

variations in scale, lighting, orientation and depth. The breakdown of training samples per category
is shown below.

Samples per Category

1.2.2 Feature Extraction

Our strategy for feature extraction for the classification task was creating a visual Bag of Words
(BoW) through a K-means clustering of SIFT descriptors. Given the nature of the contents of the
training images and the great differences in colour and shape of the flowers, we believed construct-
ing a bag of visual words would yield great results for classification.

As our chosen method of feature extraction was SIFT, there was no preprocessing required for
the images (there are some preprocessing steps in our codebase, but those were for our attempts
at feature extraction using histograms of oriented gradients). The number of SIFT features to be
used was pivotal to classification performance and computational complexity. SIFT descriptors are
a constant 128-dimension vector and it is to our discretion as to how many we use. The decisions

3

made will be further discussed in Section 1.3.2. Following our SIFT feature extraction we per-
formed K-Means clustering on all descriptors discovered for every image in the training set. With
our bag of visual words constructed, we then performed the final task of predicting which cluster
each descriptor belonged to for every training image. The resultant set of features would be 6000
histograms whose dimensionality is the number of clusters used for K-Means clustering.

1.2.3 Cross Validation & Hyperparameter Tuning

As directed in the projected description, we performed k-fold cross validation with a Support Vector
Machine. For our k-fold cross validation, we used 5 folds, in which 4800 training samples would be
used to fit our classifier, and the remaining 1200 used for validation.

The hyperparameters subject to tuning included: number of best SIFT features, number of clusters
for BoW, maximum iterations for SVM, regularization parameter of SVM, and the tolerance. For
the hyperparameters specific to the SVM, these were tuned in conjunction with our 5-fold cross
validation to determine those with the greatest sucess. The number of SIFT features and number
of clusters were ultimately decided by our available computing resources. Engaging with more than
50 SIFT features per image and over 200 cluster centers resulted in egregiously long run times and
higher values could result in overuse of memory and computer shut down. Within the boundaries
of our computing power, we found that using the 20 best SIFT features along with 300 cluster
centers gave the best results.

1.3 Classification Discussion

1.3.1 Performance Evaluation

Granted our combination of two non-deterministic methods, the highest average validation ac-
curacy we received was 0.22 and the lowest 0.11. The clustering of the SIFT descriptors is a
non-deterministic process and can result in largely different visual words. Our accuracy on the
test set, and our submission to the Kaggle Challenge, was an unprecedentedly low 0.02, which we
believe is due to incorrect transcribing of image numbers for the final csv.

1.3.2 Intricacies of Classification Methodology

The suspected sources of error caused by our chosen methodology come in two forms, the lack of
distinction between foreground and background when using SIFT features, and the selection of
cluster centers. The issue in the lack of distinction between foreground and background is that
many of the visual words could have pertained to identifiable structures in the background of an
image. This background element is useless, if not misleading for our classification. The next issue
with the methodology is the selection of cluster centers, or equivalently, the number of visual words
to be used. As our dataset contained 102 categories, given the pigeon hole principle, we should use
at least 102 visual words. Much research has gone into determining the optimal number of cluster
centers, but through experimentation we found much variance.

1.4 Classification Examples

4

True 52/Pred 34 True 52/ Pred 52
True 52/ Pred 52

True 52/ Pred 52 True 52/ Pred 52

Category 52 Examples

True 51/Pred 51 True 51/ Pred 79

True 51/ Pred 51 True 51/ Pred 7 True 51/ Pred 38

Category 51 Examples

True 28/Pred 18
True 28/ Pred 102 True 28/ Pred 77

True 28/ Pred 83 True 28/ Pred 28

Category 28 Examples

True 77/Pred 77
True 77/ Pred 77

True 77/ Pred 77
True 77/ Pred 77

True 77/ Pred 77

Category 77 Examples

5

True 94/Pred 94 True 94/ Pred 46 True 94/ Pred 94 True 94/ Pred 97
True 94/ Pred 94

Category 94 Examples

6

2 Segmentation

In order to segment the flower images, we first filtered the images to reduce noise; we then then
utilized a Gaussian Mixture Model (GMM) with Expectation Maximization (EM), and a K-Means
(KM) model to perform segmentation. Implementation and hyperparameter details for these models
are discussed in Section 2.2.

2.1 Segmentation Results

2.1.1 Confusion Matrix

Below are the confusion matrices for both segmentation methods. Each data point represents one
pixel, with ’Yes’ representing a white pixel in the segmentation mask (or the foreground/flower)
and ’No’ representing a black pixel (or background). Ground truths were provided in the dataset,
while the predictions were generated by each segmentation method.

Gaussian Mixture Model:

Ground Truth
Yes No

Predicted
Yes 7513727 4853286

No 4895786 16159935

K-Means:

Ground Truth
Yes No

Predicted
Yes 1003731 2319220

No 2372182 18694001

2.1.2 DICE (Overall)

Segmentation Model Avg. DICE Std. Dev. DICE

GMM 0.5283 0.2952

KM 0.7470 0.3013

7

2.1.3 DICE (Per Validation Set)

Gaussian Mixture Model:

Validation Set Avg. DICE Std. Dev. DICE

1 0.4945 0.2461

2 0.3630 0.2254

3 0.6029 0.2855

4 0.7720 0.2906

5 0.4092 0.2254

Normalized Graph Cut:

Validation Set Avg. DICE Std. Dev. DICE

1 0.6973 0.2637

2 0.6441 0.3680

3 0.6793 0.3362

4 0.8852 0.2189

5 0.8225 0.2132

2.2 Segmentation Methodology

2.2.1 Image Preprocessing

The images provided in flower segmentation/images were preprocessed using a filter to reduce
noise. The filter was applied to smooth the flower shapes, as an inspection of the masks provided
in flower segmentation/segmentation showed that the ground truth masks were fairly smooth and
not extremely precise.

We decided to use a bilateral filter to achieve smoothing, while still maintaining strong edges
in the images. A bilateral filter is an extension of the Gaussian Smoothing filter seen in class,
but the filter weights also take into account differences in pixel intensity and color in addition to
the standard distance between pixels. This helps maintain edges between regions of starkly dif-
ferent colors. The filter, therefore, should maintain the delineation between a flower petal and its
background.

2.2.2 Segmentation Approaches

The approaches used for segmentation were selected following an comparison of the input images to
their expected masks. It appeared to us that the main input feature tying an image to its ground
truth mask is the difference in color between a flower and the background (usually green from
leaves or brown from dirt). Therefore, we decided to approach the segmentation using colour-based
clustering.

Gaussian Mixture Model: Our initial approach was to use the
sklearn.mixture.GaussianMixture implementation in a supervised approach. We realized, however,
after hours of trying to train the model that our personal laptops had insufficient compute power to
iterate this process for hyperparameter selection. Therefore we utilized helper functions written by
group member Durham Abric in Assignment 3 for our GMM implementation, and made changes

8

to refactor for the binary segmentation required. This implementation was unsupervised, and thus
hyperparamter tuning had to be accomplished manually.

K-Means Clustering: The implementation for KM was based on the skimage.segmentation.slic
function, which provides k-means clustering in the colour-(x,y) space. We coded a function to wrap
the slic implementation, and provide additional functionality.

Note: Both approaches were initially hampered by the randomness of which label (of {0,1}) was
applied to the foreground (flower) and background. On account of this, some of the predicted
masks were inverted with a white background and a white foreground. In order to overcome this,
we calculated the average distance of each label from the center of the image and coloured the label
nearest to the center white (assuming the flower is central to the image) and the other label black.
This caused a significant improvement, but still fails in some cases.

2.2.3 Hyperparameter Selection

Gaussian Mixture Model: The GMM implementation we used has only one hyperparamater:
the number of EM iterations. In order to find the optimal number of iterations, we tested various
values on a logarithmic scale (i.e. 1, 10, 100, 1000) and noted the DICE values for all. It became
clear that the algorithm performed best with few iterations, and became too receptive to noise
(e.g. lighting conditions, small textures) with large numbers of iterations. Therefore we honed
in on iterations in the range 1-10, and tested all values in this range. The best DICE score was
accomplished with 3 iterations.

K-Means Clustering: The KM implementation and the slic function took 3 hyperparameters:
compactness, enforcing connectivity, and the maximum iterations. The most impactful of these
parameters was compactness, which controls the balance between clustering on colour proximity
and space proximity, such that low values highly weight color and larger values put more weight
on location. Similar to the number of iterations in GM, we varied compactness logarithmically (i.e.
0.01, 0.1, 1, 10, 100) and honed in on the best value (holding all other parameters constant), which
was 1.5. The same process was then repeated for the max iters parameter, and we selected 20
iterations. In all instances, KM performed best with connectivity was not enforced, even though
most foreground segments are contiguous in the ground truth masks.

2.2.4 Cross Validation

Both methods were tested on the input set as a whole, as well as on 5 distinct subsets on inputs that
together comprised the entire input set. Because both segmentation approaches were unsupervised,
it was unnecessary to segment the input into training, validation and test sets, because there isn’t
any feedback into the algorithm in order to improve performance. Thus, testing the algorithms on
separate sets alone should quantify how well they will generalize to other examples of the same
problem. The results of the cross validation approach can be seen previously in Section 2.1.3.

2.3 Segmentation Discussion

2.3.1 Performance Evaluation

As clearly outlined in Section 2.1, the K-Means Clustering approach was more successful than
the Gaussian Mixture Model approach. Overall, we believe the results of the segmentation are

9

strong, given the intersection between the ground truth and predictions are between 50-75% for
both methods. However, both methods also have fairly high standard deviation for their respective
DICE scores; analysis of why this is the case will be provided for each approach below in Section
2.3.2.

For both approaches, we believe that an implementation that automates hyperparameter tuning
on a per image basis rather than on the dataset level. For both approaches, the ideal hyperparam-
eters vary widely for different images; the contrast in colour is the main factor that varies which
hyperparameters should be chosen.

2.3.2 Methodology Strengths & Weaknesses

Gaussian Mixture Model: The GMM model performs very well on flowers that have little vari-
ance in their color (see images 524 and 685 in Section 2.4), but often fails to identify the entire
flower for multi-coloured flowers (see images 902 and 269 in Section 2.4). This may be because
for our implementation clustering is entirely based on colour and not any spacial data. Therefore
the variance in flower colours introduced a lot of variance in performance & therefore the standard
deviation in its DICE score. Additionally, because the number of EM iterations was constant, the
algorithm didn’t always converge; as a result some predicted masks were coloured almost entirely
white, which introduced many false positive pixels into the confusion matrix.

K-Means Clustering: In contrast to the GMM model, the KM implementation did use spacial
data in its clustering, which is why it achieved a much stronger performance. Because spatial data
was taken into account, the performance of KM was much more robust to colour variance within
a flower. While the GMM model was prone to false positive labelling, the KM model was prone
to producing entirely black predictions full of false negative results. Again, this may be because
max iters was set to 20, and some images may have required additional iterations to achieve the
optimal result.

2.4 Segmentation Examples

Input Image Ground Truth GMM Prediction KM Prediction

Image 00524 Segmentation

10

Input Image Ground Truth GMM Prediction KM Prediction

Image 00685 Segmentation

Input Image Ground Truth GMM Prediction KM Prediction

Image 00902 Segmentation

Input Image Ground Truth GMM Prediction KM Prediction

Image 00083 Segmentation

Input Image Ground Truth GMM Prediction KM Prediction

Image 00269 Segmentation

11

